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The problem of charged dust distribution in the presence of zero-mass scalar
field for a spherically symmetric conformally flat metric has been investigated.
Exact solutions are obtained in the comoving coordinate system for the static
model as well as for the nonstatic model. It has been shown that in the nonstatic
model the electromagnetic field and dust distribution cannot survive when the
scalar field is taken to be a function of time ¢ only. Physical interpretation of the
solutions has been investigated.

1. INTRODUCTION

In the present paper, we have investigated the problem of zero-mass
scalar field interactions in the presence of charged dust distribution. Exact
solutions are obtained in the comoving coordinate system. We have studied
the problem in the static model as well as in the nonstatic model. In the
nonstatic model if the scalar field is taken to be a function of time 7 only, it
is shown that both the electromagnetic field and the dust distribution
cannot survive.

In Section 2 the formulation of the problem is presented. In Section 3
the field equations are given. Solutions and their physical interpretation are
presented in Section 4.
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2. FORMULATION OF THE PROBLEM
Einstein’s field -equations are given by
GijERij_(l/z)Rgij:-k[j—;j+]—;’j'+]}/]{] (1)

where the energy—momentum tensors of zero-mass scalar field, the electro-
magnetic field, and dust distribution are given by

_ 1 1k
T;’j—E(V,iV,j-gijV,kV ) (2)
[ J— 1 a (13
ij 47T( E(XE] +%gijFaBF B) (3)
and
7 =pUy, @
respectively.

Here p is the mass density and U is the 4-velocity vector.
The scalar V satisfies the wave equanon

g” V.i;=0 ()
The electromagnetic field equations are given by
Fsz—o’U" (6)
and
F. =0 (7)

where o' is the charge density.
The line element considered for the problem is

ds*=edit> —dr —r*d6* —r?sin’ 0 dg?] (8)

where A is a function of r and ¢ only.

As for notation a comma or a semicolon followed by a subscript
denotes partial differentiation or covariant differentiation, respectively.
Units are so chosen that C=G=1.
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3. FIELD EQUATIONS
Considering the comoving coordinate system we get

Uy=U,=U,=0 and U,=e"?

For the metric (8) the surviving field equations are given by

22 pe 1 )
Gn=y }\2 +—-—T"—}\’M:k[g—W(Vﬁ—l—V’i)—FTH}

Ay pe A2 1 ,
Gzzz}‘,n-}‘,u"'_r’—_TA'}'_‘f]:k[g(_V,Z\'f'V,%t)’*"Tzz]
G313 =0y,

3 24, X 1 ,
Gu=—\ ”+Z)\2,4——;—i——4’—’=k[§-7;(V,21+ Vj)+pe*+T44]
. 1 - 1 ,
G14=}‘,14_‘2”>\,1>‘,4‘“k 4“7;V,1V,4+T44
F,F.
G\, =0=F F,— -2
12 14424 P25l 8
1
G3=0=F,F,— ﬁF12F32
G =0=F Fy — F B
e 1
G24=0“51ﬂ1+m531:43
and
e 1
G34:O*F31F41+ﬁF32F42
where
_ _ _w %
V,2_09 V’3_0, I/,l_ ar’ and I/’4— 3
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From (6) we obtain the equations
41 4l 2\ _ 4
FY+F 2)\’14—7 =—g'U

IFUN ,+FY =0

and
F3%+F¥cot§=0

From (7), we obtain

AF, 0F,

00 9
and

OFy _ OFy _

ot or
The equation (5) becomes

2V

Vi V==t =MV +V A =0

4. SOLUTIONS OF THE FIELD EQUATIONS AND THE
PHYSICAL INTERPRETATIONS OF THE SOLUTIONS

From equations (15)-(19), we obtain
F, =F3;=F,=F;=0, F,#0and F3 #0

Using (26) in (3), we obtain

4 4 '’ 4 e szz
—T“=T22‘—‘T33=T44=—W(Fﬁ‘+——~3-§)

T.=0, (r#s;r,5s=1,2,3,4)

rs

(20)

(21)

(22)

(23)

(26)

27)
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From (21) and (23), we obtain

F14:e)\/2f(r) (28)

where f(r) is an arbitrary function of ».
From (24) and (22), we obtain

Fy,=Lsing (29)

where L is an arbitrary constant.

To solve the field equations completely we consider the cases where A is
a function of r only or a function of time ¢ only.

Using (27) and taking A as a function of r or ¢ only in (14), we obtain

ViV.=0 (30)

which shows that either V ;=0 or V ,=0.
Case L. A=A(r), V. #0 V4= 0 Using the above conditions and (29)
in (10), (11), and (13), we obtain

A0 klpa a2 L
Z>\2 +T—-§7-T—[V’1—e (FI4+F (31)
A Nk 2 A g2 L
>\,11 ‘f‘T———g—;[—V,l‘f‘e FM—]LF (32)
and
20, Ny k| g I A
—}\’”—T—T———g;r— V,1+e F14+7 + ke 0 (33)
respectively.
From (31) and (32), we obtain the relation
3A
A +—+)\ =0 (34)
which on solving yields
— &
)\—log(ﬁl—;i) (35)

where 8, and «, are arbitrary constants.
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The equation (25) in this case reduces to the form
pAY
Vat—+VA,=0 (36)

Substituting the value of A from (35) in (36) and solving the resulting
equation, we obtain

A
V= 0
(20‘1:81)1/2 ¢

(37)

""‘(0‘1/2:81)1/2
H’(al/zﬁl)l/z

where A and B are arbitrary constants.
Using (35), (29), and (37) in (31) or (32), we obtain

2 A? B 6aim _ 16ma;  I?
(B 2r)  krS(B—e2r?) ket ot

(38)

Using (35), (37), and (38) in (33), we obtain

Ja,7? 2
kp: alr ﬁl _ kA (39)

r‘s(,B-—oz,/2r2)3 47'rr4(,31 —a1/2r2)3

Using (38) and (35) in (20), we obtain the charge density as

@ \ "3
el 3
Bl 2r2
« —~A%a, + 6aim 3a’n
2r7([31—a1/2r2)2 kr’(B,—ay/2r7) krg(,Bl—ocl/2r2)2
A? 6alm

—16ma, /kr®—L*/r*

r4(Bi—a/2r?)  krS(By—ay/2r?)
(40)
where the positive sign corresponds to the negative value of F,, and the

negative sign corresponds to the positive value of F,.
The reality condition obtained from (39) is

kAZ
30‘1.31>'4’; (41)
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From (38) we see that F,, will be real provided

25 2a1277/k+a]L2/2
167, B, /k+L*B,—A?

(42)

The solutions (29), (35), (37), (38), (39), and (40) constitute the complete set
of solutions under Case 1. We observe from (38), (39), and (40) that F,,, p,
and o’ all decrease with the increase of r and tend to zero as r— oo.

From (37) we also observe that the scalar V decreases with the increase
of r but it reduces to an arbitrary constant as r — co.

Case lI. A=A(¢), V=0, V ,+0. Using the above conditions the field
equations (10), (11), and (13) reduce to

"}‘,44“’4_:1([@‘[/,4"@” F14+7{ (43)
N,k _ L?
-A’M——Zi:gT—[Vi+e "(Fﬁfi-—;; (44)
and
3% il pery Ly2y &g P
4}\,4—-k[pe Ll Vitgo | Fat r4 (45)
respectively.
From (43) and (44), we obtain
L2
F124 + 74— =0 (46)
which implies that
F,=0 and L=0 (47)
When L=0, we have from (29)
£,3=0 (48)

The results (47) and (48) show that the electromagnetic field cannot survive
for a conformally flat spherically symmetric metric provided the scalar V
and A both are functions of time 7 only.
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The wave equation (25) reduces to the form
VgtV A =0 (49)

which on solving yields

V=k1fe_>‘dt+k2 (50)

where k, and k, are arbitrary constants.
Using (50) in (43) or (44), we obtain

Ny ko,
A wu— g = gokie (51)

A particular solution of (51) is obtained as
A=log(k,t+k,) (52)
where k, and k, are arbitrary constants subject to the condition that

k2
3k3 == (53)

which is a relation between the constants k, &, and k5.
Using (52) in (50), we obtain

k
V= #log(k3t+k4 )+k, (54)
3

Using (52), (53), and (54) in (45), we obtain
p=0 (55)

Hence the dust distribution cannot survive as well as electromagnetic
field provided the scalar V is taken to be a function of time ¢ only in a
purely nonstatic model.

Case III. A=A(¢), V ,=0, V;#0. The equations (10), (11), and (13)
now reduce to

A2 k _
—A’M—%:E[V’% —e )‘(Fli‘l’?)] (56)

}\2 LZ
——}\,44—-74:—4-:—%[V,21+e_>‘(F&+F)] (57)
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and
32 _ N Iy S
Z)\A—kl:pe +§7—T'V!1+€ F14+‘r—4 (58)
respectively.
From (56) and (57), we obtain
LZ
V}l:e—*(ﬂ%?) (59)
The equation (25) reduces to the form
2V
Vit =+=0 (60)
which on solving yields
kS
V= ‘-r— +k6 (61)
where kg and k¢ are arbitrary constants.
Using (28) in (59), we obtain
e M2

(62)

Since V'is taken to be a function of 7 only the relation (62) will be valid only
when the arbitrary constant L=0.
Taking L=0 in (29) and (62), we obtain

E,=0 (63)
and
Vi=fir) (64)
But from (61), we obtain
k
Vi=-— ’% (65)
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From (64) and (65), we can derive
k2
fAr)== (66)

Using (66) in (68), we obtain

(eA/Z)k
Fiu== 2 (67)
Using (59) in (56) or (57), we obtain
A?
A gt —4ﬁ =0 (68)
which on solving yields
A=4log(k,t+ky) (69)
where k, and kg are arbitrary constants.
Using (69) in (67), we obtain
ks 2
F14“—;3(k7t+k8) (70)
Using (69) and (70) in (58), we obtain
12k32 kk?
kp=——— LI (71)
(kpttkg) | (kot+kg) Amr
The reality condition obtained from (71) is
,_ kk3 2
12k3>—(kqt+ky) (72)
4ar

Using (69) and (70) in (20) we obtain the charge density ¢’ to be zero.
Since the charge density is zero we see that the nature of the material is
neutral and charge does not reside on the matter. From (61), (70), and (71),
we observe that the scalar V" and the electric field component F,, decrease
with the increase of r and the mass density p increases with the increase of r.
The electric component F,, increases with time while the mass density p



Distributions of Charged Dust and Zero-Mass Scalar Fields 785

decreases with time. When r— oo, we obtain from (61), (70), and (71)

F =0 (73)
1242 1

Tk (k7t+k8)4

respectively.
The solution (73) shows that an uncharged dust distribution interacting
with a constant scalar field V exists as r— oo.



